UOH - Psychométrie et Statistique en L1 - 7. Relations entre Statistique et Psychométrie
header_UOH header_UOHPSY
Accueil arrow Comprendre arrow Psychologie, statistique et psychométrie arrow 7. Relations entre Statistique et Psychométrie
7. Relations entre Statistique et Psychométrie Convertir en PDF Version imprimable Suggérer par mail
Appréciation des utilisateurs: / 10
FaibleMeilleur 
Écrit par Stéphane Vautier   
Index de l'article
1. La statistique et la psychométrie utilisent des échelles de mesure
2. La statistique et la psychométrie utilisent le langage des mathématiques
3. La statistique et la psychométrie s'appuient sur la théorie des probabilités
4. On fait des analyses statistiques avec des scores psychométriques
 
 
 
 
 
 
 
Objectifs. Apporter des éléments de réponse à la question : quelles différences et points communs y a-t-il entre statistique et psychométrie ?
 
 
  • Une différence : la statistique produit des méthodes d'analyse des données tandis que la psychométrie produit des méthodes de recueil des données.
  • Trois points communs : statistique et psychométrie (1) utilisent des échelles de mesure, (2) utilisent le langage des mathématiques, (3) s'appuient sur la théorie des probabilités.

1. La statistique et la psychométrie utilisent des échelles de mesure

echelle.jpg

Dans un article de 1946, intitué "On the theory of scales of measurement " (De la théorie des échelles de mesure), Stevens propose de surmonter le sceptiscisme d'une partie de la communauté scientifique quant à la possibilité de mesurer les sensations, en distinguant différents types d'échelles de mesure. Sa démarche s'oppose à la tradition selon laquelle ne sont mesurables que les grandeurs pour lesquelles ont sait définir une unité de mesure ayant une signification expérimentale (on peut aussi dire empirique ou opérationnelle).

Stevens redéfinit la mesure comme l'attribution de nombres à des objets ou à des événements selon certaines règles. L'article Échelles de mesure présente en détail les différentes échelles de mesure. Dans le cadre de ce paragraphe, il sera suffisant de savoir reconnaître les différents types d'échelles :

  1. Échelle nominale,
  2. Échelle ordinale,
  3. Échelle d'intervalle,
  4. Échelle de ratio.
1.1. Échelle nominale

Caractériser les individus selon leur sexe nécessite l'utilisation d'une échelle nominale. Les catégories de cette échelle sont la catégorie Fille d'une part, la catégorie Garçon d'autre part. On remarquera que les catégories de l'échelle sont les modalités de la variable Sexe.

On peut coder 1 et 2 les catégories, mais la proposition 1 < 2 n'a pas de sens, il n'y a pas de sens non plus à appliquer l'addition ou la soustraction à ces nombres. Les seules opérations logiques qui ont un sens sont l'égalité et la différence (avoir le même sexe ou avoir des sexes opposés).

1.2. Échelle ordinale

Caractériser les individus selon leur niveau de compétence dans un domaine particulier nécessite une échelle ordinale. Par exemple un jury peut attribuer un score variant de 0 à 100 à 10 candidats, de manière à ce que les candidats puissent être classés.

On peut coder 1, 2, ..., 100 les niveaux de compétence que le jury peut attribuer à tout candidat, mais il n'y a pas de sens à appliquer l'addition ou la soustraction à ces scores : en effet, l'opération + ou l'opération - n'ont pas de signification définie dans le domaine conceptuel des niveaux de compétences. Il est possible que les décisions qui conduisent le jury à ordonner les 10 candidats ne soient pas explicites ; dans ce cas, l'échelle ordinale n'a pas d'interprétation expérimentale claire, et on peut mettre en question sa capacité à décrire la réalité des compétences des candidats.

1.3. Échelle d'intervalle

Les scores attribués à des individus pour les différencier de manière ordinale sont très souvent traités comme s'ils étaient définis sur une échelle d'intervalle. Comme son nom l'indique, une échelle d'intervalle est fondée sur la notion d'intervalle. Sur une échelle d'intervalle, un intervalle d'une valeur donnée représente la même variation, quelle que soit la valeur prise par la borne inférieure (ou supérieure) de cet intervalle dans l'ensemble des valeurs admissibles. Ainsi par exemple, on considère généralement que la différence entre un score de QI de 100 et un score de QI de 85, soit un intervalle de 15 points de QI, représente la même variation d'intelligence que la différence entre un score de QI de 120 et un score de QI de 105, soit un intervalle de même valeur (15 points de QI). Un tel énoncé est une convention de langage tant que l'on ne sait pas définir expérimentalement à quoi correspond un intervalle quelconque au niveau de l'intelligence.

1.4. Échelle de ratio

Les échelles de ratio permettent de mesurer des grandeurs au sens classique du terme. Par exemple, compter le nombre de bonbons que l'on trouve dans un paquet de 125 grammes produit une mesure sur une échelle de ratio. Les nombres utilisés représentent de manière unique les quantités de bonbons. La mesure est définie comme la proportion définie par le rapport de deux quantités, la quantité de bonbons rapportée à la quantité 1. Dans le cas des grandeurs continues, la quantité 1 est définie conventionnellement par référence à un étalon.

  



Dernière mise à jour : ( 10-07-2011 )
 
< Article précédent   Article suivant >

Citation

Il y a trois sortes de mensonges : les mensonges, les sacrés mensonges, et les statistiques.
Mark Twain, Autobiographie
 

Sondage

Pour étudier la statistique et la psychométrie en L1, ce site est...
 
© 2021 UOH - Psychométrie et Statistique en L1
Joomla! est un logiciel libre distribu sous licence GNU/GPL.